
Simulink®

Getting Started Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Getting Started Guide
© COPYRIGHT 1990–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 First printing Revised for Simulink 6.6 (Release 2007a)
September 2007 Second printing Revised for Simulink 7.0 (Release 2007b)
March 2008 Third printing Revised for Simulink 7.1 (Release 2008a)
October 2008 Fourth printing Revised for Simulink 7.2 (Release 2008b)
March 2009 Fifth printing Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Sixth printing Revised for Simulink 7.8 (Release 2011b)
March 2012 Seventh printing Revised for Simulink 7.9 (Release 2012a)
September 2012 Eighth printing Revised for Simulink 8.0 (Release 2012b)
March 2013 Ninth printing Revised for Simulink 8.1 (Release 2013a)
September 2013 Tenth printing Revised for Simulink 8.2 (Release 2013b)
March 2014 Eleventh printing Revised for Simulink 8.3 (Release 2014a)
October 2014 Twelfth printing Revised for Simulink 8.4 (Release 2014b)
March 2015 Thirteenth printing Revised for Simulink 8.5 (Release 2015a)
September 2015 Fourteenth printing Revised for Simulink 8.6 (Release 2015b)
October 2015 Online only Rereleased for Simulink 8.5.1 (Release

2015aSP1)
March 2016 Fifteenth printing Revised for Simulink 8.7 (Release 2016a)
September 2016 Sixteenth printing Revised for Simulink 8.8 (Release 2016b)
March 2017 Seventeenth printing Revised for Simulink 8.9 (Release 2017a)
September 2017 Eighteenth printing Revised for Simulink 9.0 (Release 2017b)
March 2018 Nineteenth printing Revised for Simulink 9.1 (Release 2018a)
September 2018 Twentieth printing Revised for Simulink 9.2 (Release 2018b)
March 2019 Online only Revised for Simulink 9.3 (Release 2019a)
September 2019 Online only Revised for Simulink 10.0 (Release 2019b)

Introduction
1

Simulink Product Description . 1-2
Key Features . 1-2

Model-Based Design with Simulink . 1-3
Example Model-Based Design Workflow in Simulink 1-4

System Definition and Layout . 1-7
Determine Modeling Objectives . 1-8
Identify System Components and Interfaces 1-8

Model and Validate a System . 1-15
Open the System Layout . 1-15
Model the Components . 1-15
Validate Components Using Simulation 1-21
Validate the Model . 1-24

Design a System in Simulink . 1-29
Open System Model . 1-29
Identify Designed Components and Design Goals 1-29
Analyze System Behavior Using Simulation 1-30
Design Components and Verify Design 1-34

Modeling in Simulink
2

Simulink Block Diagrams . 2-2

v

Contents

Simple Simulink Model
3

Create a Simple Model . 3-2
Open New Model . 3-3
Open Simulink Library Browser . 3-5
Add Blocks to a Model . 3-7
Connect Blocks . 3-8
Add Signal Viewer . 3-9
Run Simulation . 3-9
Refine Model . 3-11

Navigate a Simulink Model
4

Navigate Model . 4-2
Navigate Through Model Hierarchy . 4-2
View Signal Attributes . 4-4
Trace a Signal . 4-7

vi Contents

Introduction

• “Simulink Product Description” on page 1-2
• “Model-Based Design with Simulink” on page 1-3
• “System Definition and Layout” on page 1-7
• “Model and Validate a System” on page 1-15
• “Design a System in Simulink” on page 1-29

1

Simulink Product Description
Simulation and Model-Based Design

Simulink is a block diagram environment for multidomain simulation and Model-Based
Design. It supports system-level design, simulation, automatic code generation, and
continuous test and verification of embedded systems. Simulink provides a graphical
editor, customizable block libraries, and solvers for modeling and simulating dynamic
systems. It is integrated with MATLAB®, enabling you to incorporate MATLAB algorithms
into models and export simulation results to MATLAB for further analysis.

Key Features
• Graphical editor for building and managing hierarchical block diagrams
• Libraries of predefined blocks for modeling continuous-time and discrete-time systems
• Simulation engine with fixed-step and variable-step ODE solvers
• Scopes and data displays for viewing simulation results
• Project and data management tools for managing model files and data
• Model analysis tools for refining model architecture and increasing simulation speed
• MATLAB Function block for importing MATLAB algorithms into models
• Legacy Code Tool for importing C and C++ code into models

1 Introduction

1-2

Model-Based Design with Simulink
Modeling is a way to create a virtual representation of a real-world system. You can
simulate this virtual representation under a wide range of conditions to see how it
behaves.

Modeling and simulation are valuable for testing conditions that are difficult to reproduce
with hardware prototypes alone. This is especially true in the early phase of the design
process when hardware is not yet available. Iterating between modeling and simulation
can improve the quality of the system design early, by reducing the number of errors
found later in the design process.

You can automatically generate code from a model and, when software and hardware
implementation requirements are included, create test benches for system verification.
Code generation saves time and prevents the introduction of manually coded errors.

In Model-Based Design, a system model is at the center of the workflow. Model-Based
Design enables fast and cost-effective development of dynamic systems, including control
systems, signal processing systems, and communications systems.

Model-Based Design allows you to:

• Use a common design environment across project teams
• Link designs directly to requirements
• Identify and correct errors continuously by integrating testing with design
• Refine algorithms through multidomain simulation
• Automatically generate embedded software code and documentation
• Develop and reuse test suites

 Model-Based Design with Simulink

1-3

Example Model-Based Design Workflow in Simulink
To get started with a Model-Based Design task, consider this workflow.

1 Introduction

1-4

The workflow in this tutorial focuses on fundamental Simulink tasks as they relate to
Model-Based Design.

• “System Definition and Layout” on page 1-7 — Identify modeling goals, determine
components, model system. layout

• “Model and Validate a System” on page 1-15 — Model and test components, integrate
components, test system.

• “Design a System in Simulink” on page 1-29 — Design and test new components.

The first two tasks in this workflow model an existing system and establish the context for
designing a component. The next step in this workflow would be to implement the new
component. You can use rapid prototyping and embedded code generation products, such
as Simulink Real-Time™ and Embedded Coder®, to generate code and use the design with
a real, physical system.

 Model-Based Design with Simulink

1-5

See Also

Related Examples
• “System Definition and Layout” on page 1-7
• “Model and Validate a System” on page 1-15
• “Design a System in Simulink” on page 1-29
• “Organize Large Modeling Projects”

External Websites
• Simulink Overview
• Model-Based Design with MATLAB and Simulink

1 Introduction

1-6

https://www.mathworks.com/videos/simulink-overview-61216.html
https://www.mathworks.com/videos/model-based-design-with-matlab-and-simulink-69040.html

System Definition and Layout

In this section...
“Determine Modeling Objectives” on page 1-8
“Identify System Components and Interfaces” on page 1-8

The top-level system layout of a Simulink model is a common context that many
engineering teams can use and is the basis for many tasks in the Model-Based Design
paradigm: analysis, design, test, and implementation. You define a system at the top level
by identifying the structure and individual components. You then organize your model in a
hierarchical manner that corresponds to the components. Then you define interfaces for
each component and the connections between components.

The featured model in this tutorial is a flat robot that can move or rotate with the help of
two wheels, similar to a home vacuuming robot. This model assumes that the robot moves
in one of two ways:

• Linear — Both wheels turn in the same direction with the same speed and the robot
moves linearly.

• Rotational — The wheels turn in opposite directions with the same speed and the robot
rotates in place.

 System Definition and Layout

1-7

Each type of motion starts from a resting state, that is, both rotational and linear speeds
are zero. With these assumptions, the linear and rotational motion components can be
modeled separately.

Determine Modeling Objectives
Before designing a model, consider your goals and requirements. The goals dictate both
the structure and the level of detail for the model. If the goal is simply to figure out how
fast the robot can go, modeling just for linear motion is sufficient. If the goal is to design a
set of inputs for the device to follow a given path, then the rotational component is
involved. If obstacle avoidance is a goal, then the system needs a sensor. This tutorial
builds a model with the goal of designing sensor parameters so that the robot stops in
time when it detects an obstacle in its path. To achieve this goal, the model must:

• Determine how quickly the robot stops when the motors stop
• Provide a series of commands for linear and rotational motion so that the robot can

move in a two-dimensional space

The first modeling objective enables you to analyze the motion so you can design the
sensor. The second objective enables you to test your design.

Identify System Components and Interfaces
Once you understand your modeling requirements, you can begin to identify the
components of the system. Identifying individual components and their relationships
within a top-level structure help build a potentially complex model systematically. You
perform these steps outside Simulink before you begin building your model.

This task involves answering these questions:

• What are the structural and functional components of the system? When a layout
reflects the physical and functional structure, it helps you to understand, build,
communicate, and test the system. This becomes more important when parts of the
system are to be implemented in different stages in the design process.

• What are the inputs and outputs for each component? Draw a picture showing the
connections between components. This picture helps you to visualize signal flow
within the model, identify the source and sink of each signal, and determine if all
necessary components exist.

• What level of detail is necessary? Include major system parameters in your diagram.
Creating a picture of the system can help you identify and model the parts that are

1 Introduction

1-8

essential to the behaviors you want to observe. Each component and parameter that
contributes to the modeling goal must have a representation in the model, but there is
a tradeoff between complexity and readability. Modeling can be an iterative process.
You can start with a high-level model with few details and then gradually increase
complexity where required.

It is often beneficial to consider the following:

• What parts of the system need testing?
• What is the test data and success criteria?
• Which outputs are necessary for analysis and design tasks?

Identify Robot Motion Components

The system in this tutorial defines a robot that moves with two electric wheels in two
dimensions. It includes:

• Linear motion characteristics
• Rotational motion characteristics
• Transformations to determine the location of the system in two dimensions
• A sensor to measure the distance of the robot from an obstacle

The model for this system includes two identical wheels, input forces applied to the
wheels, rotational dynamics, coordinate transformation, and a sensor. The model uses a
Subsystem to represent each component:

1 Open a new Simulink model. See “Open New Model” on page 3-3.
2 Open the Library Browser. See “Open Simulink Library Browser” on page 3-5.
3 Add Subsystem blocks. Drag five Subsystem blocks from the Ports & Subsystems

library to the new model.
4 Click a subsystem. In the Format tab, click the Auto name drop-down. Clear the

Hide Automatic Block Names check box.

 System Definition and Layout

1-9

5 Arrange and rename the Subsystem blocks as shown. To change block names, double-
click the block name and edit the text.

Define Interfaces Between Components

Identify input and output connections between subsystems. Input and output values
change dynamically during a simulation. Lines connecting blocks represent data transfer.
This table shows the inputs and outputs for each component.

Block Input Output Related
Information

Inputs None Force to right wheel

Force to left wheel

Not applicable

1 Introduction

1-10

Block Input Output Related
Information

Right wheel Force to right wheel Right wheel velocity Directional, negative
means reverse
direction

Left wheel Force to left wheel Left wheel velocity Directional, negative
means reverse
direction

Rotation Velocity difference
between right and
left wheels

Rotational angle Measured
counterclockwise

Coordinate
Transformation

Normal speed

Rotational angle

Velocity in X

Velocity in Y

Not applicable

Sensor X coordinate

Y coordinate

None No block necessary
for modeling

Some block inputs do not exactly match block outputs. Therefore, in addition to the
dynamics of the individual components, the model must compute the following:

• Input to the rotation computation — Subtract the velocities of the two wheels and
divide by two.

• Input to the coordinate transformation — Average the velocities of the two wheels.
• Input to the sensor — Integrate the outputs of the coordinate transformation.

The wheel velocities are always equal in magnitude and the computations are accurate
within that assumption.

Add the necessary components and finalize connections:

1 Add the necessary input and output ports to each subsystem. Double-click a
Subsystem block.

 System Definition and Layout

1-11

Each new Subsystem block contains one Inport (In1) and one Outport (Out1) block.
These blocks define the signal interface with the next higher level in a model
hierarchy.

Each Inport block creates an input port on the Subsystem block, and each Outport
block creates an output port. The model reflects the names of these blocks as the
input/output port names. Add more blocks for additional input and output signals. On
the Simulink Editor toolbar, click the Navigate Up To Parent button to return to
the top level.

For each block, add and rename Inport and Outport blocks.

When copying an Inport block to create a new one, use the Paste (Ctrl+V) option.
2 Compute required inputs to the Coordinate Transform and Rotation subsystems from

the left wheel and right wheel velocities.

a Compute the Linear speed input to the Coordinate Transform subsystem. Add an
Add block from the Math Operations library and connect the outputs of the two-
wheel components. Add a Gain block and set the gain parameter to 1/2. Connect
the output of the Add block to this Gain block.

b Compute the Speed difference input to the Rotation subsystem. Add a Subtract
block from the Math Operations library. Connect the right wheel velocity to the +
input and the left wheel velocity to the - input. Connect the outputs of the two
wheel components. Add a Gain block and set the gain parameter to 1/2. Connect
the output of the Subtract block to this Gain block.

1 Introduction

1-12

3 Compute the X and Y coordinates from the X and Y velocities. Add two Integrator
blocks from the Continuous library and connect the outputs of the Coordinate
Transform block. Leave initial conditions of the Integrator blocks set to 0.

4 Complete the connections for the system.

Parameters and Data

Determine the parameters that are part of the model and their values. Use modeling goals
to determine whether these values are always fixed or change from simulation to
simulation. Parameters that contribute to the modeling goal require explicit
representation in the model. This table helps determine the level of detail when modeling
each component.

 System Definition and Layout

1-13

Parameter Block Symbol Value Type
Mass Left Wheel

Right Wheel

m 2.5 kg Variable

Rolling
resistance

Left Wheel

Right Wheel

k_drag 30 Ns2/m Variable

Robot radius Rotation r 0.15 m Variable
Initial angle Rotation None 0 rad Fixed
Initial velocities Left Wheel

Right Wheel

None 0 m/s

0 m/s

Fixed

Initial (X, Y)
coordinates

Integrators None (0, 0) m Fixed

Simulink uses the MATLAB workspace to evaluate parameters. Set these parameters in
the MATLAB command window:

m = 2.5;
k_drag = 30;
r = 0.15;

See Also

Related Examples
• “Model and Validate a System” on page 1-15
• “Design a System in Simulink” on page 1-29

1 Introduction

1-14

Model and Validate a System
You model each component within the system structure to represent the physical or
functional behavior of that component. You verify the basic component behavior by
simulating them using test data.

Open the System Layout
A big-picture view of the whole system layout is useful when modeling individual
components. Start by loading the layout model. At the MATLAB command line, enter:

open_system('system_layout.slx')

Model the Components
A Simulink model of a component is based on several starting points:

• An explicit mathematical relationship between the output and the input of a physical
component — You can compute the outputs of the component from the inputs, directly
or indirectly, through algebraic computations and integration of differential equations.
For example, computation of the water level in a tank given the inflow rate is an
explicit relationship. Each Simulink block executes based on the definition of the
computations from its inputs to its outputs.

• An implicit mathematical relationship between model variables of a physical
component — Because variables are interdependent, assigning an input and an output
to the component is not straightforward. For example, the voltage at the + end of a

 Model and Validate a System

1-15

motor connected in a circuit and the voltage at the - end have an implicit relationship.
To model such a relationship in Simulink, you can either use physical modeling tools
such as Simscape™ or model these variables as part of a larger component that allows
input/output definition. Sometimes, closer inspection of modeling goals and
component definitions helps to define input/output relationships.

• Data obtained from an actual system — You have measured input/output data from the
actual component, but a fully defined mathematical relationship does not exist. Many
devices have unmodeled components that fit this description. For example, the heat
dissipated by a television. You can use the System Identification Toolbox™ to define
the input/output relationship for such a system.

• An explicit functional definition — You define the outputs of a functional component
from the inputs through algebraic and logical computations. For example, the
switching logic of a thermostat. You can model most functional relationships as
Simulink blocks and subsystems.

This tutorial models physical and functional components with explicit input/output
relationships. In this tutorial, you will:

1 Use the system equations to create a Simulink model.
2 Add and connect Simulink blocks in the Simulink Editor. Blocks represent coefficients

and variables from the equations.
3 Build the model for each component separately. The most effective way to build a

model of a system is to first consider components independently.
4 Start by building simple models using approximations of the system. Identify

assumptions that can affect the accuracy of your model. Iteratively add detail until
the level of complexity satisfies the modeling and accuracy requirements.

Model the Physical Components

Describe the relationships between components, for example, data, energy, and force
transfer. Use the system equations to build a graphical model of the system in Simulink.

Some questions to ask before you begin to model a component:

• What are the constants for each component? What values do not change unless you
change them?

• What are the variables for each component? What values change over time?
• How many state variables does a component have?

1 Introduction

1-16

Derive the equations for each component using scientific principles. Many system
equations fall into three categories:

• For continuous systems, differential equations describe the rate of change for
variables with the equations defined for all values of time. For example, a first-order
differential equation gives the velocity of a car:

dv(t)
dt = − b

mv(t) + u(t)

• For discrete systems, difference equations describe the rate of change for variables,
but the equations are defined only at specific times. For example, the control signal
from a discrete proportional-derivative controller:

pd[n] = (e[n]− e[n− 1])Kd + e[n]Kp

• Equations without derivatives are algebraic equations. For example, an algebraic
equation gives the total current in a parallel circuit with two components:

It = Ia + Ib

Wheels and Linear Motion

There are two forces that act on a wheel:

• Force applied by the motor — The force F acts in the direction of velocity change and
is an input to the wheel subsystems.

• Drag force — The force Fdrag acts against the direction of velocity change and is a
function of velocity.

Fdrag = kdragV V

Acceleration is proportional to the sum of these forces:

(/)

(/)

(/)

m V F F

m V F k V V

V
F k V V

m

drag

drag

drag

2

2

2

&

&

&

= -

= -

=

-

Where kdrag is the drag coefficient and m is the mass of the robot. Each wheel carries half
of this mass.

 Model and Validate a System

1-17

Build the wheel model:

1 In the system_layout model, double-click the Right Wheel subsystem to display the
empty subsystem.

2 Model velocity and acceleration. Add an Integrator block. Leave the initial condition
set to 0. The input of this block is the acceleration Vdot and the output is the velocity
V.

3 Model the drag force. Add a MATLAB Function block from the User-Defined
Functions library. The MATLAB Function block provides a quick way to implement
mathematical expressions in your model. To edit the function, double-click the block
to open the MATLAB Function editor.

4 Define arguments for the MATLAB Function block. In the MATLAB Function block

editor, click the Edit Data button. Click k_drag, set Scope to Parameter, and
click Apply.

5 Subtract the drag force from the motor force with Subtract block. Complete the
force-acceleration equation with a Gain block with parameter 1/(m/2).

6 To reverse the direction of the MATLAB Function block, right-click the block and
select Rotate & Flip > Flip Block. Connect the blocks.

1 Introduction

1-18

7 The dynamics of the two wheels are the same. Make a copy of the Right Wheel
subsystem you just modeled and paste it in the Left Wheel subsystem.

8
View the top level of the model. Click the Navigate Up To Parent button .

Rotational Motion

When the two wheels turn in opposite directions, they move in a circle of radius r, causing
rotational motion of the robot. When the wheels turn in the same direction, there is no
rotation. Assuming that the wheel velocities are always equal in magnitude, it is practical
to model rotational motion as dependent on the difference of the two wheel velocities VR
and VL:

θ̇ =
VR− VL

2r

Build the rotation dynamics model:

1 In the top level of the system_layout model, double-click the Rotation subsystem to
display the empty subsystem. Delete the connection between the Inport and the
Outport blocks.

2 Model angular speed and angle. Add an Integrator block. Leave the initial condition
set to 0. The output of this block is the angle theta and the input is the angular speed
theta_dot.

3 Compute angular speed from tangential speed. Add a Gain with parameter 1/(2*r).
4 Connect the blocks.

 Model and Validate a System

1-19

5
View the top level of the model. Click the Navigate Up To Parent button .

Model the Functional Components

Describe the function from the input of a function to its output. This description can
include algebraic equations and logical constructs, which you can use to build a graphical
model of the system in Simulink.

Coordinate Transformation

The velocity of the robot in the X and Y coordinates, VX and VY, is related to the linear
speed VN and the angle theta:

VX = − VNcos(θ)
VY = VNsin(θ)

Build the coordinate transformation model:

1 In the top level of the system_layout model, double-click the Coordinate Transform
subsystem to display the empty subsystem.

2 Model trigonometric functions. Add a SinCos block from the Math Operations library.
3 Model multiplications. Add two Product blocks from the Math Operations library.
4 Connect the blocks.

5
View the top level of the model. Click the Navigate Up To Parent button .

Set Model Parameters

A source for model parameter values can be:

• Written specifications such as standard property tables or manufacturer data sheets

1 Introduction

1-20

• Direct measurements on an existing system
• Estimations using system input/output

This model uses these parameters:

Parameter Symbol Value
Mass m 2.5 kg
Rolling resistance k_drag 30 Ns2/m
Robot radius r 0.15 m

Simulink uses the MATLAB workspace to evaluate parameters. Set these parameters in
the MATLAB command window:

m = 2.5;
k_drag = 30;
r = 0.15;

Validate Components Using Simulation
Validate components by supplying an input and observing the output. Even such a simple
validation can point out immediate ways to improve the model. This example validates
these behaviors:

• When a force is applied continuously to a wheel, the velocity increases until it reaches
a steady-state velocity.

• When the wheels turn in opposite directions, the rotation angle increases at a constant
rate.

Validate Wheel Component

Create and run a test model for the wheel component:

1
Create a new model. In the Simulation tab, click New . Copy the Right Wheel
block into the new model.

2 Create a test input. Add a Step block from the Sources library and connect it to the
input of the Right Wheel block. Leave the step time parameter set to 1.

3 Add a viewer to the output. Right-click the output port of the Right Wheel block and
select Create & Connect Viewer > Simulink > Scope.

 Model and Validate a System

1-21

4
Run the simulation. In the Simulation tab, click Run .

The simulation result exhibits the general expected behavior. There is no motion until
force is applied at step time. When force is applied, the speed starts increasing and then
settles at a constant when the applied force and the drag force reach an equilibrium. In
addition to validation, this simulation also gives information on the maximum speed of the
wheel for the given force.

Validate Rotation Component

Create and run a test model for the rotation model:

1 Introduction

1-22

1
Create a new model. Click and copy the Rotation block into the new model.

2 Create a test input in the new model. Add a Step block from the Sources library.
Leave the step time parameter set to 1. Connect it to the input of the Rotation block.
This input represents the difference of the wheel velocities when the wheels are
rotating in opposite directions.

3 Add a viewer to the output. Right-click the output port of the Rotation block and
select Create & Connect Viewer > Simulink > Scope.

4
Run the simulation. In the Simulation tab, click Run .

 Model and Validate a System

1-23

This simulation shows that the angle increases steadily when the wheels are turning with
the same speed in opposite directions. You can make some model improvements to make
it easier to interpret the angle output, for example:

• You can convert the output in radians to degrees. Add a Gain block with a gain of
180/pi.

• You can display the degrees output in cycles of 360 degrees. Add a Math Function
block with function mod.

MATLAB trigonometric functions take inputs in radians.

Validate the Model
After you validate individual components, you can perform a similar validation on the
complete model. This example validates the following behavior:

• When the same force is applied to both wheels in the same direction, the robot moves
in a line.

• When the same force is applied to both wheels in opposite directions, the robot rotates
in place.

1 In the system_layout model, double-click the Inputs subsystem to display the
empty subsystem.

2 Create a test input by adding a Step block. Leave the step time parameter set to 1.
Connect it to both Outport blocks.

3 At the top level of the model, connect both output signals to the same scope viewer:

1 Introduction

1-24

4 Run the model.

In this figure, the yellow line is the X direction and the blue line is the Y direction.
Since the angle is zero and is not changing, the vehicle moves only in the X direction,
as expected.

5 Double-click the Inputs subsystem and add a Gain with parameter -1 between the
source and the second output. This reverses the direction for the left wheel.

 Model and Validate a System

1-25

6 Add a scope to the angle output.
7 Run the model.

1 Introduction

1-26

The first view shows that there is no motion in the X-Y plane. The second view shows
that there is steady rotation.

You can use this final model to answer many questions about the model by changing the
input. Some examples are:

• What happens when the initial angle is not zero?
• How long does it take for the motion to stop when the force drops to zero?
• What happens when the robot is heavier?
• What happens when the robot moves on a smoother surface, that is, when the drag
coefficient is lower?

 Model and Validate a System

1-27

See Also

Related Examples
• “System Definition and Layout” on page 1-7
• “Design a System in Simulink” on page 1-29

1 Introduction

1-28

Design a System in Simulink
In this section...
“Open System Model” on page 1-29
“Identify Designed Components and Design Goals” on page 1-29
“Analyze System Behavior Using Simulation” on page 1-30
“Design Components and Verify Design” on page 1-34

Model-Based Design paradigm is centered on models of physical components and systems
as a basis for design, testing, and implementation activities. This tutorial adds a designed
component to an existing system model.

Open System Model
The model is a flat robot that can move or rotate with the help of two wheels, similar to a
home vacuuming robot. Open the model by entering in the MATLAB command line:

open_system('system_model.slx')

This tutorial analyzes this system and adds functionality to it.

Identify Designed Components and Design Goals
Specification of the design objective is a critical first step to the design task. Even with a
simple system, there could be multiple and even competing design goals. Consider these
goals for the example model:

 Design a System in Simulink

1-29

• Design a controller that varies the force input so that the wheels turn at a desired
speed.

• Design inputs that make the device move in a predetermined path.
• Design a sensor and controller so that the device follows a line.
• Design a planning algorithm so that the device reaches a certain point using the

shortest path possible while avoiding obstacles.
• Design a sensor and algorithm so that the device moves over a certain area while

avoiding obstacles.

This tutorial designs an alert system. You determine the parameters for a sensor that
measures the distance from an obstacle. A perfect sensor measures the distance from an
obstacle accurately. An alert system samples those measurements at fixed intervals so
that the output is always within 0.05 m of the measurement. The system generates an
alert in time for the robot to come to a stop before hitting the obstacle.

Analyze System Behavior Using Simulation
The design of the new component requires analyzing the linear motion of the robot to
determine:

• How far the robot can travel at the top speed when power to the wheels is cut
• The top speed of the robot

Run the model with a force input that starts motion, waits until the robot reaches a steady
velocity, and then sets the input force to zero:

1 In the model, double-click the Inputs subsystem.
2 Delete the existing step input and add a Pulse Generator block.
3 Set parameters for the Pulse Generator block:

• Amplitude: 1
• Period: 20
• Pulse Width: 15

These parameters are designed to ensure that the top speed is reached. You can
change parameters to see their effect.

4 Run the model for 20 sec.

1 Introduction

1-30

 Design a System in Simulink

1-31

The first scope shows that the speed rapidly starts decreasing when the power is cut at
time 3. The speed then asymptotically approaches zero but does not quite reach it. This is
a limitation of modeling; dynamics at low speeds without external force requires a more
complex representation. For the objective here, however, it is possible to make
approximations. Zoom in on the position signal.

1 Introduction

1-32

At time 3, the position of the robot is at about 0.55 m. When the simulation ends, the
position is less than 0.71 m. It is safe to say that the robot travels less than 0.16 m after
the power is cut.

To find the top speed:

1 Zoom on the stable region of the velocity output in time, from 1 s to 3 s.
2 Leave zoom mode by clicking the zoom button again. Click the Cursor

Measurements button .
3 Set the second cursor to the region where the velocity curve is flat.

 Design a System in Simulink

1-33

The Value column in the Cursor Measurements panel indicates that the top speed of
the robot is 0.183 m/s. To calculate the time it takes for the robot to travel 0.05 m, divide
0.05 m by 0.183 m/s. You get 0.27 sec.

Design Components and Verify Design
Sensor design consists of these components:

• Measurement of the distance between the robot and the obstacle — This example
assumes that the measurement is perfect.

• The time interval at which the alert system measures the distance — To keep the
measurement error below 0.05 m, this sampling interval must be less than 0.27 sec.
Use 0.25 sec.

• The distance at which the sensor produces an alert — Analysis shows that slow down
must start at 0.16 m from the obstacle. The actual alert distance must also take the
error from discrete measurements, 0.05 m, into account.

1 Introduction

1-34

Add Designed Component

Build the sensor:

1 Create a subsystem with the ports as shown.

2 Construct the distance measurement subsystem. In the Sensor model block, use
Subtract, Math Function with Function magnitude^2, Sum, and Sqrt blocks as
shown. Note the reordering of the input ports.

3 Model sampling. Add a Zero-Order Hold block from the Discrete library to the
subsystem and set the Sample time parameter to 0.25.

4 Model the alert logic. Add a Compare to Constant block from the Logic and Bit
Operations library and set the parameters:

• Operator: <=
• Constant Value: 0.21

 Design a System in Simulink

1-35

• Output data type: boolean

This logical block sets its output to 1 when its input is less than or equal to 0.21.
5 Finish connecting the blocks.

Verify Design

Test the design with an obstacle location of X = 0.65, Y = 0 using Constant blocks as
inputs to the Sensor model subsystem. This test verifies design functionality in the X
direction. You can create similar tests for different paths. This model only generates an
alert. It does not control the robot.

1 Set the obstacle location. Add two Constant blocks from the Sources library set the
constant values to 0.65 and 0. Connect the position outputs of the robot to the inputs
of the sensor.

2 Add a scope to the Alert output.

3 Run the model.

1 Introduction

1-36

 Design a System in Simulink

1-37

Observe that the alert status becomes 1 once the position is within 0.21 m of the obstacle
location and the design requirement for this component is satisfied.

For real-world systems with complex components and formal requirements, the Simulink
product family includes additional tools to refine and automate the design process.
Simulink Requirements™ provide tools to formally define requirements and link them to
model components. Simulink Control Design™ can facilitate the design if you want to
build a controller for this robot. Simulink Verification and Validation™ products establish
a formal framework for testing components and systems.

1 Introduction

1-38

See Also

Related Examples
• “Model-Based Design with Simulink” on page 1-3
• “System Definition and Layout” on page 1-7
• “Model and Validate a System” on page 1-15

 See Also

1-39

Modeling in Simulink

2

Simulink Block Diagrams
Simulink is a graphical modeling and simulation environment for dynamic systems. You
can create block diagrams, where blocks represent parts of a system. A block can
represent a physical component, a small system, or a function. An input/output
relationship fully characterizes a block. Consider these examples:

• A faucet fills a bucket — Water goes into the bucket at a certain flow rate, and the
bucket gets heavier. A block can represent the bucket, with flow rate as the input and
its weight as the output.

• You use a megaphone to make your voice heard — The sound produced at one end of
the megaphone is amplified at the other end. The megaphone is the block, the input is
the sound wave at its source, and the output is the sound wave as you hear it.

• You push a cart and it moves — The cart is the block, the force you apply is the input,
and the cart's position is the output.

The definition of a block is only complete with its inputs and outputs defined; this task
relates to the goal of the model. For example, the cart velocity may be a natural choice as
an output if the modeling goal does not involve its location.

Simulink provides block libraries that are collections of blocks grouped by functionality.
For example, to model a megaphone that multiplies its input by a constant, you use a Gain
block from the Math Operations library.

A sound wave goes into the megaphone as its input, and a louder version of the same
wave comes out as its output.

The > signs denote the inputs and outputs of a block, which can be connected to other
blocks.

2 Modeling in Simulink

2-2

You can connect blocks to other blocks to form systems and represent more complex
functionality. For example, an audio player turns a digital file into sound. A digital
representation is read from storage, is interpreted mathematically, and then turned into
physical sound. The software that processes the digital file to compute the sound
waveform can be one block; the speaker that takes the waveform and turns it into sound
can be another block. A component that generates the input is another block.

To model the sine wave input to the megaphone in Simulink, include a Sine Wave source.

The primary function of Simulink is to simulate behavior of system components over time.
In its simplest form, this task involves keeping a clock, determining the order in which the
blocks are to be simulated, and propagating the outputs computed in the block diagram to
the next block. Consider the megaphone. At each time step, Simulink must compute the
value of the sine wave, propagate it to the megaphone, and then compute the value of its
output.

 Simulink Block Diagrams

2-3

At each time step, each block computes its outputs from its inputs. Once all of the signals
in a diagram are computed at a given time step, Simulink determines the next time step
(based on the model configuration and numerical solver algorithms) and advances the
simulation clock. Then each block computes their output for this new time step.

In simulation, time progresses differently from a real clock. Each time step takes as much
time as it takes to finish the computations for that time step, whether that time step
represents a fraction of a second or a few years.

2 Modeling in Simulink

2-4

Often, the effect of a component's input on its output is not instantaneous. For example,
turning on a heater does not result in an instant change in temperature. Rather, this
action provides input to a differential equation. The history of the temperature (a state) is
also a factor. When simulation requires solving a differential or difference equation,
Simulink employs memory and numerical solvers to compute the state values for the time
step.

Simulink handles data in three categories:

• Signals — Block inputs and outputs, computed during simulation
• States — Internal values, representing the dynamics of the block, computed during

simulation
• Parameters — Values that affect the behavior of a block, controlled by the user

At each time step, Simulink computes new values for signals and states. By contrast, you
specify parameters when you build the model and can occasionally change them while
simulation is running.

See Also

Related Examples
• “Create a Simple Model” on page 3-2
• “Model-Based Design with Simulink” on page 1-3

 See Also

2-5

Simple Simulink Model

3

Create a Simple Model
In this section...
“Open New Model” on page 3-3
“Open Simulink Library Browser” on page 3-5
“Add Blocks to a Model” on page 3-7
“Connect Blocks” on page 3-8
“Add Signal Viewer” on page 3-9
“Run Simulation” on page 3-9
“Refine Model” on page 3-11

You can use Simulink to model a system and then simulate the dynamic behavior of that
system. The basic techniques you use to create a simple model in this tutorial are the
same as those you use for more complex models. This example simulates simplified
motion of a car. A car is typically in motion while the gas pedal is pressed. After the pedal
is released, the car idles and comes to a stop.

A Simulink block is a model element that defines a mathematical relationship between its
input and output. To create this simple model, you need four Simulink blocks.

Block Name Block Purpose Model Purpose
Pulse Generator Generate an input signal for

the model
Represent the accelerator
pedal

Gain Multiply the input signal by
a constant value

Calculate how pressing the
accelerator affects the car
acceleration

Integrator, Second-Order Integrate the input signal
twice

Obtain position from
acceleration

Outport Designate a signal as an
output from the model

Designate the position as an
output from the model

3 Simple Simulink Model

3-2

Simulating this model integrates a brief pulse twice to get a ramp. The results display in a
Scope window. The input pulse represents a press of the gas pedal — 1 when the pedal is
pressed and 0 when it is not. The output ramp is the increasing distance from the starting
point.

Open New Model
Use the Simulink Editor to build your models.

1
Start MATLAB. From the MATLAB toolstrip, click the Simulink button .

 Create a Simple Model

3-3

2 Click the Blank Model template.

The Simulink Editor opens.

3 Simple Simulink Model

3-4

3 From the Simulation tab, select Save > Save as. In the File name text box, enter a
name for your model. For example, simple_model. Click Save. The model is saved
with the file extension .slx.

Open Simulink Library Browser
Simulink provides a set of block libraries, organized by functionality in the Library
Browser. The following libraries are common to most workflows:

• Continuous — Blocks for systems with continuous states
• Discrete — Blocks for systems with discrete states
• Math Operations — Blocks that implement algebraic and logical equations
• Sinks — Blocks that store and show the signals that connect to them
• Sources — Blocks that generate the signal values that drive the model

 Create a Simple Model

3-5

1
From the Simulation tab, click the Library Browser button .

2 Set the Library Browser to stay on top of the other desktop windows. On the Simulink

Library Browser toolbar, select the Stay on top button .

To browse through the block libraries, select a category and then a functional area in the
left pane. To search all of the available block libraries, enter a search term.

For example, find the Pulse Generator block. In the search box on the browser toolbar,
enter pulse, and then press Enter. Simulink searches the libraries for blocks with pulse
in their name or description and then displays the blocks.

3 Simple Simulink Model

3-6

Get detailed information about a block. Right-click the Pulse Generator block, and then
select Help for the Pulse Generator block. The Help browser opens with the reference
page for the block.

Blocks typically have several parameters. You can access all block parameters by double-
clicking the block.

Add Blocks to a Model
To start building the model, browse the library and add the blocks.

1 From the Sources library, drag the Pulse Generator block to the Simulink Editor. A
copy of the Pulse Generator block appears in your model with a text box for the value
of the Amplitude parameter. Enter 1.

 Create a Simple Model

3-7

Parameter values are held throughout the simulation.
2 Add the following blocks to your model using the same approach.

Block Library Parameter
Gain Simulink/Math Operations Gain: 2
Integrator, Second-
Order

Simulink/Continuous Initial condition: 0

Outport Simulink/Sinks Port number: 1

Add a second Outport block by copying the existing one and pasting it at another
point using keyboard shortcuts.

Your model now has the blocks you need.
3 Arrange the blocks by clicking and dragging each block. To resize a block, drag a

corner.

Connect Blocks
Connect the blocks by creating lines between output ports and input ports.

1 Click the output port on the right side of the Pulse Generator block.

The output port and all input ports suitable for a connection are highlighted.

3 Simple Simulink Model

3-8

2 Click the input port of the Gain block.

Simulink connects the blocks with a line and an arrow indicating the direction of
signal flow.

3 Connect the output port of the Gain block to the input port on the Integrator, Second-
Order block.

4 Connect the two outputs of the Integrator, Second-Order block to the two Outport
blocks.

5 Save your model. In the Simulation tab, click the Save button.

Add Signal Viewer
To view simulation results, connect the first output to a Signal Viewer.

Click the signal. In the Simulation tab under Prepare, click Add Viewer. Select Scope.
A viewer icon appears on the signal and a scope window opens.

You can open the scope at any time by double-clicking the icon.

Run Simulation
After you define the configuration parameters, you are ready to simulate your model.

1 In the Simulation tab, set the simulation stop time by changing the value in the
toolbar.

 Create a Simple Model

3-9

The default stop time of 10.0 is appropriate for this model. This time value has no
unit. The time unit in Simulink depends on how the equations are constructed. This
example simulates the simplified motion of a car for 10 seconds — other models could
have time units in milliseconds or years.

2
To run the simulation, click the Run button .

The simulation runs and produces the output in the viewer.

3 Simple Simulink Model

3-10

Refine Model
This example takes an existing model, moving_car.slx, and models a proximity sensor
based on this motion model. In this scenario, a digital sensor measures the distance
between the car and an obstacle 10 m (30 ft) away. The model outputs the sensor
measurement and the position of the car, taking these conditions into consideration:

• The car comes to a hard stop when it reaches the obstacle.
• In the physical world, a sensor measures the distance imprecisely, causing random

numerical errors.
• A digital sensor operates at fixed time intervals.

Change Block Parameters

To start, open the moving_car model. At the MATLAB command line, enter:

 Create a Simple Model

3-11

open_system('moving_car.slx')

You first need to model the hard stop when the car position reaches 10 . The Integrator,
Second-Order block has a parameter for that purpose.

1 Double-click the Integrator, Second-Order block. The Block Parameters dialog box
appears.

2 Select Limit x and enter 10 for Upper limit x. The background color for the
parameter changes to indicate a modification that is not applied to the model. Click
OK to apply the changes and close the dialog box.

Add New Blocks and Connections

Add a sensor that measures the distance from the obstacle.

1 Modify the model. Expand the model window to accommodate the new blocks as
necessary.

• Find the actual distance. To find the distance between the obstacle position and
the vehicle position, add the Subtract block from the Math Operations library.
Also add the Constant block from the Sources library to set the constant value of
10 for the position of the obstacle.

• Model the imperfect measurement that would be typical to a real sensor. Generate
noise by using the Band-Limited White Noise block from the Sources library. Set
the Noise power parameter to 0.001. Add the noise to the measurement by
using an Add block from the Math Operations library.

• Model a digital sensor that fires every 0.1 seconds. In Simulink, sampling of a
signal at a given interval requires a sample and hold. Add the Zero-Order Hold
block from the Discrete library. After you add the block to the model, change the
Sample Time parameter to 0.1.

3 Simple Simulink Model

3-12

• Add another Outport to connect to the sensor output. Keep the default value of the
Port number parameter.

2 Connect the new blocks. The output of the Integrator, Second-Order block is already
connected to another port. To create a branch in that signal, left-click the signal to
highlight potential ports for connection, and click the appropriate port.

Annotate Signals

Add signal names to the model.

1 Double-click the signal and type the signal name.

2 To finish, click away from the text box.
3 Repeat these steps to add the names as shown.

 Create a Simple Model

3-13

Compare Multiple Signals

Compare the actual distance signal with the measured distance signal.

1 Create and connect a Scope Viewer to the actual distance signal. Right-click the
signal and select Create & Connect Viewer > Simulink > Scope. The name of the
signal appears in the viewer title.

2 Add the measured distance signal to the same viewer. Right-click the signal and
select Connect to Viewer > Scope1. Make sure that you are connecting to the
viewer you created in the previous step.

3 Run the model. The Viewer shows the two signals, actual distance in yellow and
measured distance in blue.

3 Simple Simulink Model

3-14

4 Zoom into the graph to observe the effect of noise and sampling. Click the Zoom

button . Left-click and drag a window around the region you want to see more
closely.

 Create a Simple Model

3-15

You can repeatedly zoom in to observe the details.

3 Simple Simulink Model

3-16

From the plot, note that the measurement can deviate from the actual value by as much
as 0.3 m. This information becomes useful when designing a safety feature, for example, a
collision warning.

See Also
Blocks
Add | Band-Limited White Noise | Constant | Gain | Pulse Generator | Second-Order
Integrator, Second-Order Integrator Limited | Zero-Order Hold

Related Examples
• “Model and Validate a System” on page 1-15

 See Also

3-17

Navigate a Simulink Model

4

Navigate Model
In this section...
“Navigate Through Model Hierarchy” on page 4-2
“View Signal Attributes” on page 4-4
“Trace a Signal” on page 4-7

Simulink models can be organized into hierarchical components. In a hierarchical model,
you can choose to view the system at a high level, or navigate down the model hierarchy
to see increasing levels of model detail.

Navigate Through Model Hierarchy
To start, open the smart_braking model. At the MATLAB command line, enter:

open_system('smart_braking.slx')

In the model:

• A vehicle moves as the gas pedal is pressed.
• A proximity sensor measures the distance between the vehicle and an obstacle.
• An alert system generates an alarm based on that proximity.
• The alarm automatically controls the brake to prevent a collision.

When you build a model, you connect blocks together to model complex components that
represent system dynamics. In this model, Vehicle, Proximity sensor, and Alert system are

4 Navigate a Simulink Model

4-2

all complex components with multiple blocks that exist in a hierarchy of subsystems. To
view the contents of a subsystem, double-click the subsystem.

To view a representation of the complete model hierarchy, click the Hide/Show Model
Browser button at the bottom left corner of the model window.

The Model Browser shows that all subsystems you view at the top level have subsystems
of their own. Expand each subsystem node to see the subsystems it contains. You can
navigate through the hierarchy in the Model Browser. For example, expand the Proximity
sensor node and then select the Sensor model subsystem.

 Navigate Model

4-3

The address bar shows which subsystem you are viewing. To open the subsystem in a
separate window, right-click the subsystem and select Open In New Window.

Every input or output port on a subsystem has a corresponding Inport or Outport block
inside the subsystem. These blocks represent data transfer between a subsystem and its
parent. When a system contains multiple input or output ports, the number on the Inport
or Outport blocks indicates the position of the port on the subsystem interface.

View Signal Attributes
Signal lines in Simulink indicate data transfer from block to block. Signals have
properties corresponding to their function in the model:

• Dimensions — Scalar, vector, or matrix
• Data type — String, double, unsigned integer, etc.
• Sample time — A fixed time interval at which the signal has an updated value, or

continuous sampling

To show the data type of all signals in a model, in the Debug tab, under Information
Overlays, click Port Data Type.

4 Navigate a Simulink Model

4-4

The model displays data types along the signal lines. Most signals are double, except the
output of the Alert system. Double-click the subsystem to investigate.

The data type labels in this subsystem show that data type change occurs in the Alert
device subsystem. Double-click the subsystem to investigate.

The Alert device component converts the Alert index signal from a double to an
integer. You can set the data type at sources, or use a Data Type Conversion block from
the Signal Attributes library. Double, the default data type, provides the best numerical
precision and is supported in all blocks. The double data type also uses the most memory
and computing power. Other numerical data types can be used to model embedded
systems where memory and computing power are limited.

To show sample times, in the Debug tab, under Information Overlays, click Colors
from the Sample Time section. The model updates to show different colors for each
sample time in the model, along with a legend.

 Navigate Model

4-5

• A block or signal with continuous dynamics is black. Signals with continuous sample
time update as often as Simulink requires to make the computations as close to the
physical world as possible.

• A block or signal that is constant is magenta. They remain unchanged through
simulation.

4 Navigate a Simulink Model

4-6

• A discrete block or signal that updates at the lowest fixed interval is red. Signals with
discrete sample time update at a fixed interval. If the model contains components with
different fixed sample times, each discrete sample time has a different color.

• Multirate subsystems, which contain a mix of discrete and continuous signals, are
yellow.

Trace a Signal
This model has a constant input and a discrete output. To determine where the sampling
scheme changes, trace the output signal through blocks.

1
To open the Model Browser, click the Hide/Show Model Browser button .

2 To highlight the output signal, in the Signal tab, click the Trace to Source button

.

The editor is now in highlight mode. Click the editor to continue.

3 To continue tracing the signal to its source, press the left arrow key.

4 Keep tracing the signal to its source until you reach the Alert logic subsystem. You
see that the Subtract block has two inputs. Choose the signal path from the Inport by
pressing the down arrow key.

 Navigate Model

4-7

5 To find the source of the discretization, keep pressing the left arrow and note the
colors of port names that reflect the sample time.

The Zero-Order Hold block in the Sensor model subsystem coverts the signal from
continuous to discrete.

See Also

Related Examples
• “Create a Simple Model” on page 3-2
• “Model-Based Design with Simulink” on page 1-3

4 Navigate a Simulink Model

4-8

